GIGA+: Scalable Directories for Shared File Systems

Swapnil V. Patil and Garth Gibson Carnegie Mellon University

www.google.com/events/scalability_seattle www.youtube.com/watch?v=2N36SE2T48Q

Carnegie Mellon Parallel Data Laboratory

Use cases for huge directories

- Apps use FS as fast, lightweight database
 - Use case: All clients inserting millions of small files in a single directory as fast as possible
 - Retain VFS API: create(), lookup(), readdir(), etc.
- Creating many small files in a "burst"
 - E.g., per-process checkpoint on large clusters
 - E.g., science experimental capture
- Creating many small files "steadily"
 - E.g., "log" files from long-running apps for later post-processing (history, bio device runs,...)
- Most interested in pushing the boundaries

GIGA+ directory index

- POSIX-compliant file system directories
 - Extreme scalability through high parallelism
 - No range queries
- GIGA+ distributed indexing technique
 - Unsynchronized, parallel growth without any central coordinator
 - Incremental, load-balanced growth
 - Tolerates stale mapping information at the clients
 - Self-describing bitmap to encode the entire index

Extendible Hashing [Fagin 79]

- Header-table doubles, if necessary
 - On splitting, the new partitions distribute their keys
- Mechanism designed for single server impln.

Today: Dirs in IBM GPFS [Schmuck02]

 Distributed directories use extendible hashing [Fagin79], with locking and cache consistency

Concurrent inserts in GPFS

 Uses distributed locking and strong consistency (will get better soon!)

1	Node 1 has a write lock on a partition of a directory
2	Node 2 needs to access the same partition and contacts the lock server.
3	Node 2 contacts Node 1 for the write lock
4	Node 1 flushes its cache by writing the partition to disk
5	Node 1 gives the write lock to Node 2
6	Node 2 reads the partition from the disk into its memory

Carnegie Mellon
Parallel Data Laboratory

Shared disk storage

Future bottleneck: map consistency

Dir /foo divided into partitions and striped across servers

Reaching for more scaling

- No need to lookup partition-to-server mapping
 - Use a mapping that is known a priori
 - Use the index size to find which partition to insert
- Tolerate stale mapping information
 - Servers verify cached state and then forward (and correct) client requests to the right server
- LH* [Litwin96] enables these properties but ...
 - Imposes a strictly serialized order of splitting
 - No parallelism: only splits one partition at a time

What's new in GIGA+ directories?

- Eliminate serialization
 - All servers grow the directory independently, in parallel, without any co-ordinator
- No synchronization & consistency bottlenecks
 - Servers only keep local "view", no shared state
- Weak consistency of mapping
 - Tolerates the use of stale mapping state at clients
 - Apps and users see strong consistency
 - Once a file is created, lookups can see it

Keeping track of partitions

- Self-describing bitmap for the entire index
 - Indicates the "presence" or "absence" of a partition
- Servers keep track of their partitions
 - Only keep local, current state of partitions
 - Bitmap used to provide lookup hints for the clients
- Clients uses it to lookup a partition
 - Merges (OR operation) bitmaps from diff servers
 - Complete bitmap gives an approximate map of all partitions on all servers

Growth of the directory index

 Each server splits its partition when the partition is full, without telling other servers

Carnegie Mellon
Parallel Data Laboratory

Concurrent growth of GIGA+ index

- Fast, concurrent growth through minimal synchronization
 - Servers decide independently when to split partitions
 - Only keep track of their partitions
 - No globally shared state on the servers
 - Servers don't sync with the rest of the system
- Servers keep a split history of its partitions
 - Edges pointing to the children nodes in the tree
 - Used to correct the clients with stale mappings

GIGA+ Design Summary

- Completely decentralized and parallel growth by allowing servers to split independently
 - Each server splits a partition when it wants,
 without synchronizing with the rest of the system
- Indexing technique that allows use stale metadata mapping at clients
 - Servers update clients' mapping information using bitmaps

Acknowledgements

- Several people involved at some point ...
 - S.Lang and R.Ross (Argonne National Lab)
 - PVFS2 prototype co-conspirators
 - S.Hase, A.Jayaraman, V.Perneti, S.Sundaraman
 - Initial FUSE prototype class project
 - M.Polte, G.Ganger, C.Faloutsos
 - General discussions and feedback

